
Free? Open-Source? Intellectual Property?
Digital Research Conversations
Leonard Nicusan
PhD Formulation Engineering (and programming nerd)



Free

● As in “beer”: no price required
● As in “speech”: have the liberty to run, copy, modify, distribute code

Nowadays used interchangeably (FOSS: Free and Open Source 
Software)



1960 - 1980s
● Code started to migrate from assembly to higher-level languages 

(Fortran, C, Forth, BCPL, Cobol)
● Architectures and OSs were “Terra Incognita” - almost every computer 

had different instructions, hardware interaction, etc.
● MIT group of “hackers” started a software sharing movement

● The Unix OS was very expensive in the 1970s - along with compilers 
and everything else.

● The GNU project started writing an open-source foundation for software



1980s - 2000s

● The GNU Compiler Collection (GCC) formed the basis of most new 
software coming in later years

● Linux, Android, etc.
● New compilers (LLVM) -> healthy competition, more research, faster 

software
● LLVM produced a new generation of programming languages: Julia, 

Rust, Go, Swift
● Now we can’t imagine a world without these FOSS tools!



How Different Would the World be without FOSS?
● Need to pay for a C compiler for a specific operating system

○ Need to pay for a Python interpreter for Windows
○ Pay more to get it on Mac too

● Pay for a code editor / IDE
● Pay for NumPy and each library
● Each company would have a different, incompatible computer 

architecture
● No Android, iOS, Linux servers
● Computers programs would be immensely slower



(Almost) All of our coding stack is FOSS

● The x86_64 CPU architecture - and ARM
● The entire interface to hardware (the C standard library, on any OS)
● The C/C++ compilers building Python, MATLAB, Windows
● The Python, Julia, R interpreters
● The libraries we use: NumPy, SciPy, OpenFOAM, LAMMPS, VTK
● The standards we use: MPI, OpenMP, OpenCL, ~CUDA



Other side of the coin: story from granular mechanics
● LAMMPS is the most popular (and often fastest) molecular dynamics 

program, developed since 1995 - FOSS-licensed
● New additions are almost always submitted and included in the main 

codebase
● Around 2010, it was forked, and an Austrian PhD added models to simulate 

granular materials - named it LIGGGHTS
● Development diverged, LAMMPS had billions in funding from entire US 

national labs, LIGGGHTS was developed by a few scientists
● The original LIGGGHTS contributor formed a company, stopped developing it, 

renamed it to Aspherix and asked for £20,000 a year to use it



Other side of the coin

● “I spent 4 years developing a library for everyone to use, why should 
a company include it in their commercial suite and profit off it?”

● But we’re also building everything on FOSS - how can we balance 
this?



Also: linking
If we “import numpy as np”, we’re not bound by NumPy’s license - we’re 
merely using it, not copying it into our codebase.

But in compiled languages, using a library is different:
● Dynamic linking (.dll, .dylib, .so) - simply “hooking” into a pre-compiled 

library when starting the program. Can easily break.
● Static linking (.a -> .exe) - actually including all code needed into our 

standalone program.
Licensing?



Licenses

● Many software licenses available today:
○ MIT, Apache, GNU v2 / v3, BSD
○ Some only need attribution: MIT, Apache
○ Some require derivatives to remain open-source: GNU

● Are creative-commons licenses applicable to code? Why, why not?
● As researchers writing code, what should we use and why?


